JOM 23171

137

Stereospecific reactions of the " $M(C_6F_5)_2$ " (M = Pd or Pt) synthons towards *cis*-dithiolato complexes

Rafael Usón, Juan Forniés, Miguel A. Usón and Santiago Herrero

Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza – C.S.I.C., 50009 Zaragoza (Spain) (Received May 22, 1992)

Abstract

Complexes of the general formula cis-[M(SC₆F₅)₂L₂] (M = Ni, Pd, or Pt; L₂ = dppm [bis(diphenylphosphino)methane], dppe [1,2-bis(diphenylphosphino)ethane], or 2PPh₃) were synthesized by the reaction (1:2) between the corresponding cis-[MCl₂L₂] and Tl(SC₆F₅). When treated with cis-[M(C₆F₅)₂(THF)₂] (M = Pd or Pt; THF = OC₄H₈) they yield geminal homo- or hetero-binuclear compounds, which were characterized by IR, NMR and mass spectroscopy.

1. Introduction

Binuclear complexes of palladium(II) or platinum(II) with a double halide or pseudohalide bridge are well known. Most of them exhibit a trans structure of type A, the cis geometry B being very rare [1,2].

Only recently [3,4] have species with the geminal structure been described, since even in reactions aiming at their synthesis, ligand rearrangement usually takes place.

As has repeatedly been shown [5], the tetrahydrofuran in the complexes cis-[M(C₆F₅)₂(THF)₂] (M = Pd or Pt; THF = OC₄H₈), can readily be displaced and the reaction proceeds with stereoretention, which makes these complexes especially valuable as a reagent for the synthesis of the gem isomers, provided that a compound with two potentially bridging ligands, preferably in a cis geometry, is available.

In this paper we describe the isolation of compounds of the type cis-[M(SC₆F₅)₂L₂] (M = Ni, Pd, or Pt; L₂ = dppm, dppe, or 2PPh₃) and their reactions towards the "cis-M(C₆F₅)₂" moleties.

2. Experimental details

Unless otherwise stated, all reactions were carried out at room temperature in solvents purified by standard procedures. The compounds $TI(SC_6F_5)$ [6], *cis*- $[M(C_6F_5)_2(THF)_2]$ (M = Pd or Pt) [7], $[MCl_2dppe]$ (M = Ni [8], Pd [9], or Pt [10]), $[MCl_2dppm]$ (M = Pd [9] or Pt [10]), *cis*-[PtCl₂(PPh₃)₂] [11] and *trans*-[Pd(O₃ClO)- (C_6F_5) (PPh₃)₂] [12] were prepared by previously published procedures.

C and H analyses were performed with a Perkin-Elmer 240B microanalyser. IR spectra were recorded (over the range 4000–250 cm⁻¹) on Perkin-Elmer 833 or 1730 FT spectrophotometers, using Nujol mulls between polyethylene sheets [13]. The ¹⁹F and ³¹P spectra of CDCl₃ solutions of the compounds were run on Varian XL-200 or Unity 300 spectrometers; chemical shifts are relative to CFCl₃ or, respectively, external 85% H₃PO₄.

The conductivity of an acetone solution of compound **19** was measured with a Philips PW9509 apparatus, using a PW9550/60 cell. Melting points were mea-

Correspondence to: Professor R. Usón.

sured on a Reichert "Thermopan" microscope, and are uncorrected.

Mass spectrometric data were obtained using FAB⁺ and FAB⁻ techniques on a VG Autospec apparatus. The matrix was 3-nitrobenzylalcohol and the samples were dissolved in CH_2Cl_2 .

EPR data were taken in a Varian E-112 spectrometer working in the X-band. Measurements at liquid nitrogen temperature were taken using a quartz immersion Dewar.

Elemental analyses, melting points and yields are given in Table 1; IR and NMR data are given in Tables 2 and 3 respectively.

2.1. General procedure for the synthesis of compounds of the type $[M(SC_6F_5)_2(L-L)]$ (L-L = dppm, M = Pd orPt; L-L = dppe, M = Ni, Pd, or Pt)

The corresponding dichloro(diphosphino)metal(II) complex was allowed to react (1:2) with Tl(SC₆F₅), and the TlCl formed was removed by filtration. The solution was evaporated to dryness and the residue was repeatedly washed with diethylether. A typical preparation was as follows.

To a suspension of 0.3322 g (0.5 mmol) of $[PtCl_2dppe]$ in acetone (15 cm³) was added 0.4035 g (1.0 mmol) of Tl(SC₆F₅). The solution immediately turned yellow and a fine white precipitate was observed.

After 22 h stirring, the TICl formed was filtered off and the solution was evaporated *in vacuo*. Diethyl ether (1 cm³) was added and the resulting yellow solid was filtered off, washed with ether $(3 \times 0.5 \text{ cm}^3)$ and suction dried.

2.2. Synthesis of cis- $[Pt(SC_6F_5)_2(PPh_3)_2]$

A suspension of 0.3619 g (0.46 mmol) of cis-[PtCl₂(PPh₃)₂] in 20 cm³ of cold acetone (NaCl/ice bath) was treated with 0.3694 g (0.92 mmol) of Tl(SC₆F₅).

After 8 h stirring, the TICl precipitate was filtered off and the solvent was removed under reduced pressure. The yellow residue was treated with diethyl ether (1 cm³), filtered, washed with ether (2 × 1 cm³) and dried *in vacuo* over P_2O_5 .

2.3. General procedure for the synthesis of compounds of the type $[(L-L)M(\mu-SC_6F_5)_2M'(C_6F_5)_2]$ (M = Ni, L-L = dppe, M' = Pd or Pt; M = Pd, Pt, L-L = dppm ordppe, M' = Pd or Pt)

The necessary bis(pentafluorothiophenolato)diphosphinometal(II) complex was treated (1:1) with the corresponding $[M'(C_6F_5)_2(THF)_2]$ species. The solvent was removed and the residue washed with methanol or diethyl ether. A standard preparation is described below.

The addition of 0.0673 g (0.1 mmol) of cis-[Pt(C_6F_5)₂(THF)₂] to a solution of 0.0992 g of [Pt(SC_6F_5)₂dppm] in dichloromethane (6 cm³) causes an immediate colour intensification.

After 2 h stirring, the solution was evaporated to

 TABLE 1. Elemental analyses, melting points and yields of complexes 1–19, calculated values are given in parentheses

Compound	C (%)	H (%)	M.p. (°C) a	Yield (%)	
$[Ni(SC_6F_5)_2dppe](1)$	53.6 (53.4)	2.7 (2.8)	216 ^b	84	
$[Pd(SC_6F_5)_2dppm]$ (2)	50.0 (50.0)	2.3 (2.5)	177	84	
$[Pd(SC_6F_5)_2dppe](3)$	50.7 (50.5)	2.7 (2.7)	231	74	
$[Pt(SC_6F_5)_2dppm] (4)$	45.4 (45.5)	2.1 (2.3)	222	94	
$[Pt(SC_6F_5)_2dppe](5)$	46.3 (46.0)	2.3 (2.4)	238	85	
$cis-[Pt(SC_6F_5)_2(PPh_3)_2]$ (6)	52.3 (51.6)	2.9 (2.7)	202	75	
$[dppeNi(\mu - SC_6F_5)_2Pd(C_6F_5)_2]$ (7)	46.8 (46.3)	1.9 (1.9)	194	81	
$[dppeNi(\mu - SC_6F_5)_2Pt(C_6F_5)_2]$ (8)	42.9 (43.4)	1.4 (1.7)	183	57	
$[dppmPd(\mu-SC_6F_5)_2Pd(C_6F_5)_2] (9)$	44.5 (44.3)	1.5 (1.7)	204 ^c	89	
$[dppmPd(\mu-SC_6F_5)_2Pt(C_6F_5)_2]$ (10)	41.8 (41.5)	1.3 (1.6)	204	72	
$[dppePd(\mu-SC_6F_5)_2Pd(C_6F_5)_2]$ (11)	45.0 (44.7)	1.7 (1.8)	199	88	
$[dppePd(\mu-SC_6F_5)_2Pt(C_6F_5)_2]$ (12)	42.4 (41.9)	1.5 (1.7)	251	87	
$[dppmPt(\mu-SC_6F_5)_2Pd(C_6F_5)_2]$ (13)	42.0 (41.5)	1.5 (1.6)	190	73	
$[dppmPt(\mu-SC_6F_5)_2Pt(C_6F_5)_2]$ (14)	39.6 (39.1)	1.4 (1.5)	217	64	
$[dppePt(\mu-SC_6F_5)_2Pd(C_6F_5)_2](15)$	42.6 (41.9)	1.7 (1.7)	232	68	
$[dppePt(\mu-SC_6F_5)_2Pt(C_6F_5)_2]$ (16)	39.8 (39.5)	1.5 (1.6)	267	81	
$[(PPh_3)_2Pt(\mu-SC_6F_5)_2Pd(C_6F_5)_2]$ (17)	46.8 (46.2)	2.0 (1.9)	199	74	
$[(PPh_3)_2 Pt(\mu - SC_6F_5)_2 Pt(C_6F_5)_2]$ (18)	43.2 (43.8)	1.7 (1.8)	268	62	
$[dppePt(\mu-SC_6F_5)_2Pd(C_6F_5)(PPh_3)]ClO_4(19)$	46.0 (45.8)	2.2 (2.4)	139	90	

^a Small colour changes are observed during the heating process for all the compounds. ^b Decomposes. ^c Decomposes on melting.

TABLE 2.	Characteristic	IR	absorptions
----------	----------------	----	-------------

Compound	v(C-S)	X-sensitive	C ₆ F ₅	Phosphine		
1	858vs		1310m, 1126w, 1078vs	1441vs, 1192m, 1164m, 1104vs, 1029m, 999s		
			1059m, 1014m, 972vs	828vs, 752s, 740vs, 704vs, 687vs, 534vs, 484vs		
2 859vs			1505vs, 1306w, 1273w, 1079s	1438vs, 1191w, 1160w, 1098s, 1027w		
			1129w, 1009m, 969vs	998m, 754m, 695s, 687s, 540m, 505m, 477m		
3	860vs		1506vs, 1309m, 1268w, 1125w	1440vs, 1184w, 1163m, 1105vs, 1029w, 998m		
			1076vs, 1062w, 1013m, 972vs	828vs, 751s, 740s, 706vs, 687vs, 535vs, 482s		
4	855vs		1505vs, 1308m, 1280m	1440vs, 1190m, 1164w, 1106vs, 1029m		
			1083vs, 1015m, 975vs	999s, 754m, 735vs, 699vs, 691vs, 674m, 629w		
			, ,	549s, 504vs, 482s, 466w, 451m, 404w		
5	859vs		1502vs, 1310w, 1078vs	1440vs, 1163w, 1106vs, 999m, 831s, 752m		
-			1063m, 1013w, 972vs	741m, 707vs, 688vs, 538vs, 487s, 476w		
6	857vs		1511vs, 1314m, 1269m, 1129m	1435vs. 1188s. 1161m. 1095vs. 1028m		
•			1076vs, 1008m, 970vs	1001s, 748ys, 739ys, 703ys, 691ys		
				543w, 526vs, 517vs, 499vs		
7	856vs	776s, 786m	1510vs, 1311m, 1279w, 1250w, 1081vs	1142w, 1107s, 1027w, 999m, 882m, 821s		
•		,	1055vs, 1014m, 973vs, 950vs	749s, 704s, 690s, 680m, 534vs, 485m		
8	853vs	789s, 800m	1310m, 1082s, 1057s, 1016w	1194w. 1106m. 1027s. 999w		
0			9728. 956vs	882m. 822s. 749m. 704m		
9	859vs	778m, 790m	1513vs, 1307w, 1085vs, 1054vs	1440vs, 1099vs, 999m, 750m		
-		··· ··· , ·····	1013w. 977vs. 954vs	742vs. 689m. 545m. 502m		
10	857vs	792s, 801m	1513vs. 1306w. 1270w. 1086vs	1441vs, 1100vs, 999w, 750m, 743vs		
			1058vs, 1014w, 977vs, 957vs	689m. 545m. 502m		
11	856vs	776s, 786m	1510vs. 1311m. 1279w. 1250w. 1156vw	1109vs. 1027w. 999m. 882m. 822s		
	00010		1081vs, 1054vs, 1013m, 973vs, 954vs	749s, 706vs, 689s, 681m, 534vs, 484m		
12	854vs	789s, 800m	1510vs, 1310m, 1275w, 1253w, 1082s	1109s, 1027w, 999w, 749s		
	00110	, c) u, coom	1057s, 1015w, 973vs, 956vs	882m, 822s, 707vs		
13	857vs	777m 787s	1512vs 1308m 1276w 1084s	1106vs 1093vs 1040w 1025w 999m 749vs		
15	05770		1056vs 1009w 978vs 956vs	739s 712vs 689s 554m 507s 484m 476w		
14	854vs	791s 801s	1308vs 1059vs 978vs 958vs	1186m 1167m 1092vs 1025m 998s 749vs		
14	05115	//13, 0013	150013, 105713, 77013, 75013	739vs 689s 554s 507s 484m 475m 464m 438w		
15	854s	777m 787m	1510vs. 1310m 1279w. 1251w 1082s	1189w, 1109m, 1027w, 999w, 883w, 825m, 750m		
10	0010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1055m 1012w 975s 954vs	707m 690m 537m 487w 466w 451m 404w		
16	85225	790vs 801vs	1511vs 1311m 1291m 1275m 1255m	1189w 1109vs 1027m 998m		
	00210		1083vs, 1059vs, 1015m, 976vs, 956vs	883m 825s 751vs 707vs		
17	848vs	780m 791w	1515vs 1315w 1282w 1083vs	1441vs 1098s 1046m 1002m 755m 745m 702s		
1,	01015	700m, 771w	1056s 976vs 954vs	693m 688m 543m 526s 520m 495w 487w		
18	846vs	794s, 805s	1514vs. 1315vs. 1282m. 1265m	1098vs. 1044w. 1002m. 745s. 739s. 702vs		
	0.0.0		1084vs. 1059vs. 977vs. 957vs	687vs. 543s. 525vs. 512m. 495m. 487m		
19	855vs	788m	1310m, 1085vs, 1014m	1193m, 1163m, 1028m, 998s, 884w, 824m		
	00010		978vs 956vs	693s 531s 511m 486s 438w		

dryness; methanol (1 cm³) was added and the beige solid was filtered off, washed with methanol (2×0.5 cm³) and dried *in vacuo* over P₂O₅.

2.4. Synthesis of $[(PPh_3)_2Pt(\mu-SC_6F_5)_2M'(C_6F_5)_2]$ (M = Pd or Pt)

To a solution of 0.1118 g (0.1 mmol) of *cis*-[Pt(SC₆F₅)₂(PPh₃)₂] in dichloromethane (5 cm³) was added 0.1 mmol of the corresponding *cis*-[M'(C₆F₅)₂-(THF)₂].

A white precipitate was slowly formed and, after 2 h

stirring, the solid was filtered off, washed with CH_2Cl_2 (1 cm³) and suction dried.

2.5. Synthesis of $[dppePt(\mu-SC_6F_5)_2Pd(C_6F_5)-(PPh_3)]ClO_4$

When a white toluene suspension of 0.1608 g (0.16 mmol) of $[Pt(SC_6F_5)_2dppe]$ was treated with 0.1445 g (0.16 mmol) of $[O_3ClOPd(C_6F_5)(PPh_3)_2]$, it slowly turned yellow.

After 24 h stirring, the solvent was evaporated to ca. 10 cm³, hexane (15 cm³) was added and the solid was filtered off, washed with diethyl ether $(2 \times 0.5 \text{ cm}^3)$ and suction dried.

2.6. Mass spectral data

2.6.1. $[dppeNi(\mu - SC_6F_5)_2Pd(C_6F_5)_2$ (7)]. FAB⁺: $M - (C_6H_5 + C_6F_5)$, 1052, 6%; $M - (2C_6F_5)$, 962, 5%; $M - (2C_6F_5 + SC_6F_5)$, 763, 32%; $M - (2C_6F_5 + SC_6F_5 + Ni)$, 704, 16%; $M - (2C_6F_5 + SC_6F_5 + Pd)$ 656, 100%. FAB⁻: $M - (dppe + Ni + SC_6F_5)$, 640, 100%; $M - (dppe + 2SC_6F_5 + Ni)$, 441, 27%.

2.6.2. $[dppmPd(\mu-SC_6F_5)_2Pd(C_6F_5)_2]$ (9). FAB⁺: $M - (C_6F_5)$, 1162, 7%; $M - (2C_6F_5)$, 995, 19%; $M - (2C_6F_5 + SC_6F_5)$, 796, 100%; $M - (2C_6F_5 + SC_6F_5 + C_5H_5)$, 720, 18%; $M - (2C_6F_5 + SC_6F_5 + Pd)$, 690, 71%. FAB⁻: $M + (SC_6F_5 + 2C_6F_5 + Pd)$, 1969, 7%; $M - (C_6H_5 + H)$ 1251, 6%; $M - (dppm + C_6F_5)$, 778, 10%; $M - (dppm + SC_6F_5 + Pd)$, 640, 100%; $M - (dppm + 2SC_6F_5 + Pd)$, 441, 40%. 2.6.3. $[dppmPd(\mu-SC_6F_5)_2Pt(C_6F_5)_2]$ (10). FAB +: M, 1418, 15%; M - (C₆F₅), 1251, 29%; M - (C₆F₅ + SC₆F₅), 1052, 51%; M - (2C₆F₅ + SC₆F₅), 885, 63%; M - (2C₆F₅ + SC₆F₅ + Pt), 690, 100%. FAB⁻: M + (2C₆F₅ + SC₆F₅ + Pt), 2147, 15%; M, 1418, 9%; M -(dppm + SC₆F₅ + Pd), 728, 100%.

2.6.4. $[dppePd(\mu-SC_6F_5)_2Pd(C_6F_5)_2]$ (11). FAB⁺: $M - (2C_6F_5 + SC_6F_5)$, 810, 96%; $M - (2C_6F_5 + SC_6F_5 + Pd)$, 704, 100%. FAB⁻: $M - (dppe + SC_6F_5 + Pd)$, 640, 100%; $M - (dppe + 2SC_6F_5 + Pd)$, 441, 23%.

2.6.5. $[(PPh_3)_2Pt(\mu-SC_6F_5)_2Pd(C_6F_5)_2]$ (17). FAB⁺: M - (2C₆F₅ + SC₆F₅), 1025, 79%; M - (2C₆F₅ + SC₆F₅ + Pd), 919, 15%; M - (2C₆F₅ + 2SC₆F₅ + Pd), 720, 100%; M - (2C₆F₅ + 2SC₆F₅ + Pd + PPh_3), 457, 28%. FAB⁻: M - (PPh_3 + SC₆F₅ + Pt), 640, 100%.

TABLE 3. NMR data for complexes 1-19

Compound	δο	J _{o-m}	J _{Pt-Fo}	δ_m	δ_p	J _{m-p}	δ_p	J _{Pt-P}
1	- 132.9	27	-	- 166.0	- 163.1	21	56.9	-
2	-132.2	26	-	- 165.6	- 162.6	21	- 39.4	-
3	- 132.2	22	_	- 166.6	-165.3	21	57.9	-
4	- 131.3	30	-	- 164.7	- 161.1	20	- 49.8	2578
5	- 132.4	28	-	- 165.8	-162.7	20	46.0	3016
6	- 135.0	22	-	- 166.2	- 163.3	21	18.7	3114
7	-117.3	23	-	-165.5	-157.6	21	55.0	-
	-130.3	21			-162.5 ^a			
8	- 120.1	25	444	- 162.2	- 156.1	21	55.6	-
	- 129.4	23	-	- 166.0	- 164.0	20		
9	- 116.5	33	-	- 161.9	- 156.8	21	- 40.9	-
	- 128.9	24	-	- 164.8	- 162.5	21		
10	- 119.1	28	442	- 164.5	- 159.2	21	-43.0	-
	- 130.2	_ b	_	- 166.0	- 167.8	20		
11	- 117.9	23	-	- 163.6	- 158.5	21	59.5	-
	- 131.4	22	-	- 164.6	-163.2	21		
12	-120.4	28	445	-162.8	- 157.0	21	58.9	-
	- 130.8	23	-	- 166.0	- 164.0	20		
13	-116.9	26	_	- 161.7	- 155.8	21	- 52.0	2645
	- 128.4	22	_	- 162.3	- 164.8	21		
14	-120.4	29	447	- 161.7	- 155.2	21	-51.7	2605
	- 129.1	20	-	- 165.8	- 163.6	20		
15	- 118.3	28	-	- 163.6	-157.7	21	44.7	3054
	- 131.0	26	-	- 165.5	-163.0	20		
16	- 120.8	27	445	-162.8	- 156.3	21	46.3	3008
	- 130.7	22	-	- 165.9	- 163.8	20		
17	- 117.3	30	-	- 163.5	-157.7	20	13.4	3129
	-130.6	26	-	- 164.8	- 162.5	19		
18	- 121.0	30	444	- 164.0	-157.6	20	14.5	3098
	- 131.3	25	-	- 166.5	- 164.6	20		
19	-120.3	25	-	- 161.8 ^a	- 154.2	21	46.3	3081
	- 127.9	22	-		- 155.1	21	45.7	3111
	- 130.0	23	-		- 158.8	20	29.7	

^a Superimposed signals. ^b Unresolved in (CD₃)₂CO (broad signal, see text).

2.6.6. $[dppePt(\mu-SC_6F_5)_2Pd(C_6F_5)(PPh_3)]ClO_4$ (19). FAB⁺: M, 1528, 70%; $M - (PPh_3 + C_6F_5 + SC_6F_5)$, 899, 10%; $M - (PPh_3 + C_6F_5 + SC_6F_5 + Pd)$, 793, 100%; $M - (dppe + 2SC_6F_5 + Pd + Pt)$, 429, 69%.

3. Results and discussion

Addition (2:1) of thallium pentafluorobenzenethiolate to an acetone solution of $[MCl_2L_2]$ leads to the formation of the corresponding bis(pentafluorothiophenolato)-complex:

 $M = Pd, L_2 = dppm (2); M = Pd, L_2 = dppe (3)$

 $M = Pt, L_2 = dppm (4); M = Pt, L_2 = dppe (5);$

 $M = Pt, L_2 = 2PPh_3$ (6)

The reaction is driven by the low solubility of thallium chloride. This fine precipitate must be carefully filtered off. Compound 6 was synthesized at low temperature (NaCl/ice bath) to prevent partial isomerization to the trans configuration.

Evaporation of the clear solution to dryness and addition of diethyl ether affords the desired complex. Yields, melting points and elemental analyses are given in Table 1.

The IR spectra (see Table 2) of the solids show a strong, slightly broad band at 855-860 cm⁻¹ assignable [14] to the ν (C-S) vibrations of the thiolato-groups, along with typical absorptions of the pentafluorophenyl ring [14,15] and those due to the neutral ligands.

Complexes 2 and 4 show a strong band at 540 and 549 cm^{-1} , respectively, characteristic [16] of chelating dppm.

Complex 6 shows four absorptions in the 550–490 cm^{-1} region, which demonstrate [17] that the cis geometry of the PPh₃ ligands is maintained.

The ³¹P NMR spectra (see Table 3) of complexes 1-6 show a single signal (along with the expected platinum satellites in the case of compounds 4-6), indicating that in solution all phosphorus nuclei are equivalent. The negative value (from 85% H₃PO₄, as the reference) of the chemical shift in complexes 2 and 4 is taken as proof [16] of the chelate character of the dppm.

The ¹⁹F NMR spectra of complexes 1-6 show a doublet, as expected, in the region assigned [18] to the ortho-fluorine nuclei of pentafluorothiophenolatogroups, -125 to -135 ppm. No coupling to ³¹P or ¹⁹⁵Pt is observed (*i.e.* ⁵J(P-F) and ⁴ $J(Pt-F) \approx 0$).

All these data support a mononuclear nature for complexes 1-6 and a cis configuration, as proposed in eqn. (1). This geometry, together with the ability of thiolato-groups to act as bridging ligands [19], makes them especially suitable for the synthesis of geminal homo- or hetero-binuclear compounds.

Thus, when a dichloromethane solution of cis- $[M(SC_6F_5)_2L_2]$ is treated with an equivalent amount of cis- $[M'(C_6F_5)_2(THF)_2]$ the two labile tetrahydrofuran groups are displaced and the desired dinuclear compound is formed, according to eqn. (2):

.

$$is-[M(SC_6F_5)_2L_2] + cis-[M'(C_6F_5)_2(THF)_2] \longrightarrow$$

$$L \longrightarrow K \xrightarrow{C_6F_5} K' \xrightarrow{C_6F_5}$$

 $M = Ni, L_2 = dppe, M' = Pd(7) \text{ or } Pt(8)$ M = Pd, $L_2 = dppm$, M' = Pd(9) or Pt(10)M = Pd, $L_2 = dppe$, M' = Pd(11) or Pt(12)M = Pt, $L_2 = dppm$, M' = Pd(13) or Pt(14)M = Pt, $L_2 = dppe$, M' = Pd(15) or Pt(16)M = Pt, $L = PPh_3$, M' = Pd(17) or Pt(18)

For compounds 7-16, the solvent was evaporated and the residue was washed with diethyl ether or methanol; compounds 17 and 18 precipitate in dichloromethane and were simply filtered and washed; prolonged vacuum drying of most of them was necessary, since they tend to occlude solvent.

The IR spectra of these binuclear complexes show (besides other absorptions, which arise from the C_6F_5 ring of both the pentafluorobenzenethiolato [14] and the pentafluorophenyl [15] ligands) two bands in the 805-760 cm⁻¹ region (X-sensitive vibration [15,20]) indicative of a *cis* geometry of the pentafluorophenvl groups, and a somewhat broad peak assignable to ν (C–S) of the thiolato moieties.

Amongst the bands due to the neutral ligands, a strong one around 550 cm^{-1} , indicative [16] of chelating dppm, can be observed for compounds 9, 10, 13 and 14; four bands in the 550-490 cm^{-1} region, characteristic [17] of two mutually cis triphenylphosphines are found for compounds 17 and 18.

The ³¹P{¹H} NMR spectra consist of a single peak (with platinum satellites in the case of compounds 13-18) the phosphorus nuclei being, therefore, magnetically equivalent. Again, the high field position of the resonance (relative to 85% H₃PO₄) in compounds 9, 10, 13 and 14 proves [16] the chelating role of the dppm.

Complexes 7-18 show two doublets in the *ortho*-fluorine region: one in the -110 to -122 range (pentafluorophenyl) and another between -125 and -135ppm (pentafluorobenzenethiolate); in the case of compounds 13-18, the doublet at higher frequency shows ¹⁹⁵ Pt satellites, as expected.

Owing to the very low solubility of compound 10 in chloroform, its ¹⁹F NMR spectrum was at first recorded using hexadeuteroacetone as the solvent; in the *ortho*-fluorine region a doublet with ¹⁹⁵Pt satellites ($\delta = -117.5$ ppm, ⁴J(Pt-F) = 441 Hz, C₆F₅) and a slightly broadened peak ($\delta = -128.7$ ppm, SC₆F₅) were observed at room temperature, the latter suggesting a dynamic process. Hence, a variable-temperature NMR study was undertaken (see Fig. 1).

At +55°C, the signal assigned to the *ortho*-fluorine of the pentafluorothiophenolato-groups is a sharp doublet which disappears into the baseline by -30°C, while the signal in the pentafluorophenyl region is observed as a broad hump.

At -60° C, two doublets with ¹⁹⁵Pt satellites (C₆F₅) plus a slightly broader signal and a doublet with no satellites (SC₆F₅) are observed.

The fluxional behaviour of this compound is tentatively ascribed to an exchange between the syn and anti-planar geometries, through inversion at the sulphur centres, as commonly encountered [21] in double thiolato-bridged binuclear compounds.

Since this was initially the only compound (among those described here) whose NMR was studied as an acetone solution, long-term (overnight) accumulation of transients of a saturated $CDCl_3$ solution was carried out at room temperature.

In the ortho-fluorine region [18] two sharp doublets were observed at -119.9 ppm (with platinum satellites, ${}^{4}J(Pt-P) = 448$ Hz, $C_{6}F_{5}$) and -129.2 ppm (no satellites, $SC_{6}F_{5}$). Addition of a catalytic amount of acetone (0.025 ml to 0.6 ml of the deuterochloroform solution) did not change the spectral pattern. Thus coordination of acetone can be discarded as a necessary step in the exchange.

The ¹⁹F NMR spectra of hexadeuteroacetone solutions of compounds **13** and **18** were recorded, and a slight broadening of the bands was observed at room temperature; a fluxional process is clearly distinguishable when the spectra are run at -30° C.

The absence of any signal in the EPR spectrum of compound 8 at 298 and 77 K is indicative of a square planar coordination around the d^8 nickel, excluding a tetrahedral geometry or a mixture of polytopes. It is noteworthy that the colour of this compound changes reversibly from brick-red to orange on cooling.

An attempt was made to synthesize trinuclear species by reaction (1:2) between a bis(pentafluoroben-

Fig. 1. ¹⁹F NMR spectra (ortho-fluorine region) of compound 10 in hexadeuteroacetone, at various temperatures.

zenethiolato)-compound and pentafluorophenylperchloratobis(triphenylphosphino)palladium(II), where the covalent OClO₃ group is readily replaced. However, a mixture of compounds is obtained, as shown by ³¹P NMR spectroscopy.

In contrast, when equimolecular amounts of the reactants are stirred together in toluene, and hexane is added, a pure solid is obtained.

Its IR spectrum demonstrates [21] that the ClO_4 group is ionic (T_d symmetry) since a very broad band centred at approximately 1095 cm⁻¹ and a single sharp absorption at 624 cm⁻¹ are observed. Whereas ν (C–S) appears as a single broad band at 855 cm⁻¹, only one sharp band is observed in the 800–760 cm⁻¹ region (X-sensitive [20], arising from C₆F₅); other characteristic bands of the neutral and ionic ligands are given in Table 2.

The ³¹P NMR spectrum consists of three peaks (two of them with ¹⁹⁵Pt satellites), whereas in the *ortho*-fluorine region of the ¹⁹F spectrum three doublets which integrate 1:1:1 are observed. One, at -120.3 ppm, is assignable to a C₆F₅ group (see above) and the other two at -127.9 and -130.0 ppm are in the SC₆F₅ region.

These data support the following reaction scheme: $[Pt(SC_6F_5)_2dppe] +$

 $trans-[Pd(OClO_3)(C_6F_5)(PPh_3)_2] \rightarrow \\ [dppePt(\mu-SC_6F_5)_2Pd(C_6F_5)(PPh_3)]ClO_4 + PPh_3$ (3)

The elemental analysis and the molar conductivity [23] of an acetone solution of compound **19** ($c = 5.14 \times 10^{-4}$ M; $\Lambda_{\rm M} = 122.9 \ \Omega^{-1} \ {\rm cm}^2 \ {\rm mol}^{-1}$) are in good agreement with this formulation.

When the reaction is tried in a 2:1 ratio (see above) the ³¹P spectrum of the isolated mixture comfirms that the displaced triphenylphosphine reacts with the excess perchlorato-complex to give $[Pd(C_6F_5)(PPh_3)_3]ClO_4$.

3.1. Mass spectroscopy results

3.1.1. Neutral compounds

Mass spectra (FAB⁺ as well as FAB⁻) were recorded for a selection of the $[L_2M(\mu-SC_6F_5)_2-M'(C_6F_5)_2]$ complexes. Noteworthy general features are as follows.

While in the FAB⁺ spectra $L_2M(SC_6F_5)$ and $L_2M(SC_6F_5)M'$ fragments are invariably present, in the FAB⁻ the most important peak is assigned to $(C_6F_5S)M'(C_6F_5)_2$. This agrees with the formal charge distribution, positive on M and negative on M':

In those compounds containing dppm as the ancillary ligand, a peak above the molecular mass is always observed. It can be attributed to the addition fragment $L_2M(\mu-SC_6F_5)_2M'(C_6F_5)_2 + (C_6F_5S)M'(C_6F_5)_2$; the low tendency of the dppm to chelate may be the reason why this fragment is not observed when L_2 is dppe or 2PPh₃.

3.1.2. $[dppePt(\mu-SC_6F_5)_2Pd(C_6F_5)(PPh_3)]ClO_4$

The FAB⁺ spectrum of this complex shows the parent peak of the cation and the fragments dppePt(SC₆F₅) and dppePt(SC₆F₅)Pd associated with the formally positive metal centre.

Acknowledgments

We gratefully acknowledge Professor M. Laguna for valuable discussions on mass spectrometry. This work was supported by the Dirección General de Investigación Científica y Técnica and the Consejo Superior de Investigaciones Científicas (grant PB88-0076). S.H. thanks the Ministerio de Educación y Ciencia for the award of an F.P.I. scholarship.

References

- 1 R. J. Puddephatt and P. J. Thompson, J. Chem. Soc., Dalton Trans., (1977) 1219.
- 2 G. K. Anderson, R. J. Cross and D. S. Rycroft, J. Chem. Res. (s) (1977) 120; (m), 1601.
- 3 R. Usón, J. Forniés, M. Tomás, B. Menjón and A. J. Welch, Organometallics, 7 (1988) 1318.
- 4 G. López, G. García, G. Sánchez, C. Haro, M. D. Santana, J. Casabó, M. Caldés, M. Mejías, E. Molins and C. Miravitlles, J. Chem. Soc., Dalton Trans., (1991) 3311.
- 5 R. Usón, J. Forniés, M. A. Usón and M. L. Mas, *Inorg. Chim.* Acta, 168 (1990) 59, and references cited therein.
- 6 M. E. Peach, Can. J. Chem., 46 (1968) 2699.
- 7 R. Usón, J. Forniés, M. Tomás and B. Menjón, Organometallics, 4 (1985) 1912.
- 8 G. R. van Hecke and W. D. Horrocks, Jr., *Inorg. Chem.*, 5 (1966) 1968.
- 9 A. R. Sanger, J. Chem. Soc., Dalton Trans., (1977) 1971.
- 10 T. G. Appleton, M. A. Bennet and I. B. Tomkin, J. Chem. Soc., Dalton Trans., (1976) 439.
- 11 L. Malatesta and C. Cariello, J. Chem. Soc., (1958) 2323.
- 12 R. Usón, P. Royo and J. Forniés, Synth. React. Inorg. Metal-Org. Chem., 4 (1974) 157.
- 13 M. A. Usón, J. Chem. Educ., 66 (1990) 412.
- 14 W. Beck, K. H. Stetter, S. Tadros and K. E. Schwarzhans, Chem. Ber., 100 (1967) 3944.
- 15 G. B. Deacon and J. H. S. Green, Spectrochim. Acta A, 24 (1968) 1125.
- 16 J. Forniés, R. Navarro and E. P. Urriolabeitia, J. Organomet. Chem., 390 (1990) 257.
- 17 S. H. Mastin, Inorg. Chem., 13 (1974) 1003.
- 18 R. Usón, J. Forniés, M. A. Usón and J. A. Apaolaza, Inorg. Chim. Acta, 187 (1991) 175.

- 19 P. J. Blower and J. R. Dilworth, Coord. Chem. Rev., 76 (1987) 121.
- 20 R. Usón, J. Forniés, M. Tomás, B. Menjón and A. J. Welch, Organometallics, 5 (1986) 1581, and references cited therein.
- 21 E. W. Abel, S. K. Bhargava and K. G. Orrell, Prog. Inorg. Chem., 32 (1984) 1.
- 22 B. J. Hathaway and A. E. Underhill, J. Chem. Soc., (1961) 309.
- 23 W. J. Geary, Coord. Chem. Rev., 7 (1971) 81.